# Electrical Harmonics Calculator

 Harmonic 1 (hertz/gigahertz) Harmonic 2 (hertz/gigahertz) Harmonic 3 (hertz/gigahertz) Harmonic 4 (hertz/gigahertz) Harmonic 5 (hertz/gigahertz) Harmonic 6 (hertz/gigahertz) Harmonic 7 (hertz/gigahertz) Harmonic 8 (hertz/gigahertz) Harmonic 9 (hertz/gigahertz) Harmonic 10 (hertz/gigahertz) Harmonic 11 (hertz/gigahertz) Harmonic 12 (hertz/gigahertz) Harmonic 13 (hertz/gigahertz) Harmonic 14 (hertz/gigahertz) Harmonic 15 (hertz/gigahertz)

## Formula

h = (n x p)

Where,
n = an integer (1, 2, 3, 4, 5....)
p = Primary frequency or number of pulses

Harmonics are electric voltages and currents that appear on the electric power system as a result of certain kinds of electric loads. The default primary frequency is that of alternating current (AC), 60 hertz (hz). The Electrical Harmonics Calculator provides a tool for determining how much voltage and current distortion might exist on your distribution system when operating non linear loads.

A harmonic is a component of a periodic wave having a frequency that is an integral multiple of the fundamental power line frequency of 60 Hz. Harmonics are the multiple of the fundamental frequency, as shown in Figure 1. Total harmonic distortion is the contribution of all the harmonic frequency currents to the fundamental.

Example:
Calculate the Electrical harmonics for the given details.
Primary Frequency = 6

Solution:
Apply Formula:
h = (n x p)

 1st Harmonic 6 (hertz/gigahertz) 2nd Harmonic 12 (hertz/gigahertz) 3rd Harmonic 18 (hertz/gigahertz) 4th Harmonic 24 (hertz/gigahertz) 5th Harmonic 30 (hertz/gigahertz) 6th Harmonic 36 (hertz/gigahertz) 7th Harmonic 42 (hertz/gigahertz) 8th Harmonic 48 (hertz/gigahertz) 9th Harmonic 54 (hertz/gigahertz) 10th Harmonic 60 (hertz/gigahertz) 11th Harmonic 66 (hertz/gigahertz) 12th Harmonic 72 (hertz/gigahertz) 13th Harmonic 78 (hertz/gigahertz) 14th Harmonic 84 (hertz/gigahertz) 15th Harmonic 90 (hertz/gigahertz)